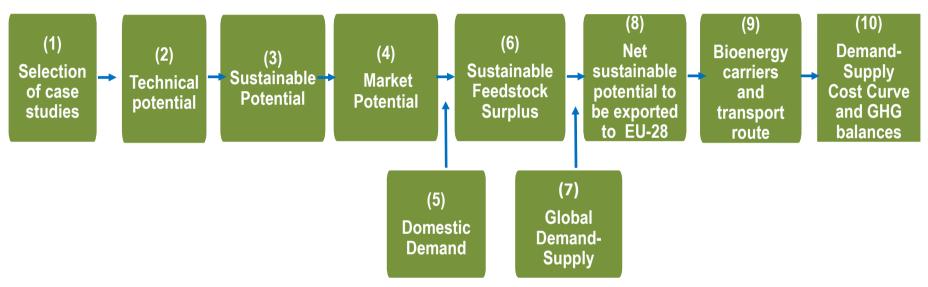


Assessing sustainable biomass export potentials: methodological considerations

Uwe R. Fritsche, Leire Iriarte (IINAS)

in collaboration with: Rocío Díaz Chavez (Imperial Colleague) Martin Junginger, Thuy Mai-Moulin (Utrecht University)

presented at the IEA Bioenergy - BioTrade2020plus Workshop: Towards sustainable international biomass trade strategies Brussels, 24.10.2014


Co-funded by the Intelligent Energy Europe Programme of the European Union

Assessing Sustainable Bioenergy Import Chains

Main equations:

- (3) = (2) unsustainable biomass
- (4) = (3) * market potential (semiquantitative analysis)
- (6) = (4) (5)

Note: From Step 3 onwards, potentials are subject to scenario conditions (BAU...)

Scenario approach

and

IEA Bioenergy

Scenarios	Current (2010/ 2012 and	BA	N	Opti	mistic	
Timeline	2014/2015)	2020	2030	2020	2030	
Anticipate possible changes in local & global biomass markets & trade at different time scales						

Method Based on :

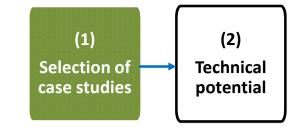
- Socio-economic development
- Policies on environment, climate, energy and industrial promotion
- Innovative pre-treatment technologies
- International & national databases (FAOSTAT, national statistics)
 - Communication with local & international stakeholders

Data for "Current" plus BAU and Optimistic Scenarios for 2020 and 2030

Expected outcomes

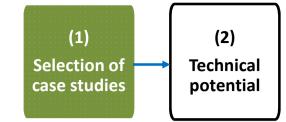
Aim

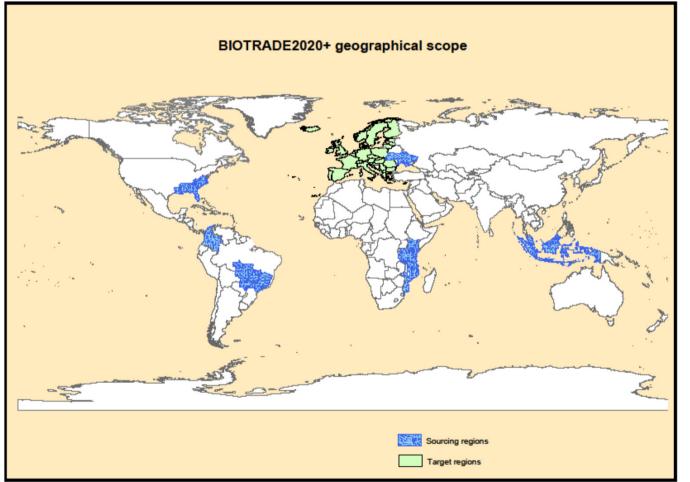
Data



(1) Selection of case studies (I)

Aim	Determine the most promising exporting countries to the EU-28 , and respective lignocellulosic feedstocks to be exported from each country
Method	 in consultation with experts and based on : National production in agriculture and forestry sectors Biomass trade patterns Political situation Data availability
Data	 International & national databases (e.g. FAOSTAT, national statistics) Communication with local experts Other projects and reports
Expected outcomes	 Database for the selected indicators Final selection of the case studies



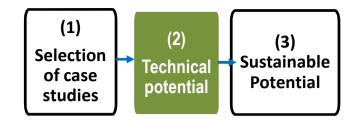


(1) Selection of case studies (II)

and

Feedstock scope: Forest residues Agricultural residues

Energy crops (lignocellulosic + woody)



(2) Technical potential

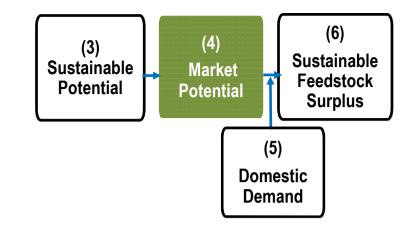
Aim	Determine the total technical potential of given feedstocks in case study countries, taking into account current production of lignocellulosic biomass and land availability
Method	Assessment made on information related to: - Selection of the relevant provinces/states (if relevant) - Specific spreadsheet for data collection (incl. results of other studies) - Application of GIS Technical potential = technically harvestable biomass
Data	 National or international statistics GIS databases Other studies about potentials (past reports) Contact with local experts, if needed
Expected outcomes	Aggregated technical potential (PJ or Mt) by country and feedstock for the baseline year (2010 or 2012) plus 2020 and 2030

(3) Sustainable potential

and

(2) Technical potential (3) Sustainable Potential (4) Market Potential (3) (3) (4) Market Potential (3) (3) (3) (4) Market Potential (3) (3) (4) Market Potential

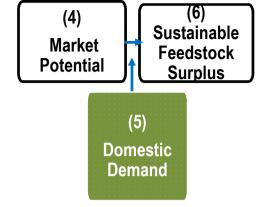
	3a. Sustainable potentials for basic/advanced criteria	3b. Industrial development capacity
Aim	Determine sustainable potential for basic (EU RED) and advanced economic, environmen- tal, social and institutional criteria	Determine sustainable potential considering the industrial development capacity
Method	Same as for Step 2 + reducing thechnical potentials through application of sustainability indicators (GIS and LCA)	Project sustainable industrial capacity in 2020 + 2030, taking into account past developments and new technologies for BAU and optimistic scenarios
Data	Same as for Step 2, plus literature review	Past developments of industrial capacity for feedstocks + projected developments, incl. demand for other uses
Expected outcomes	Aggregated sustainable potential (PJ) by country and feedstock 2020 + 2030, considering basic/advanced sustainability	Establish potential sustainable industrial capacity for each type of feedstock for 2020 and 2030 (PJ)
		1



(4) Market potential

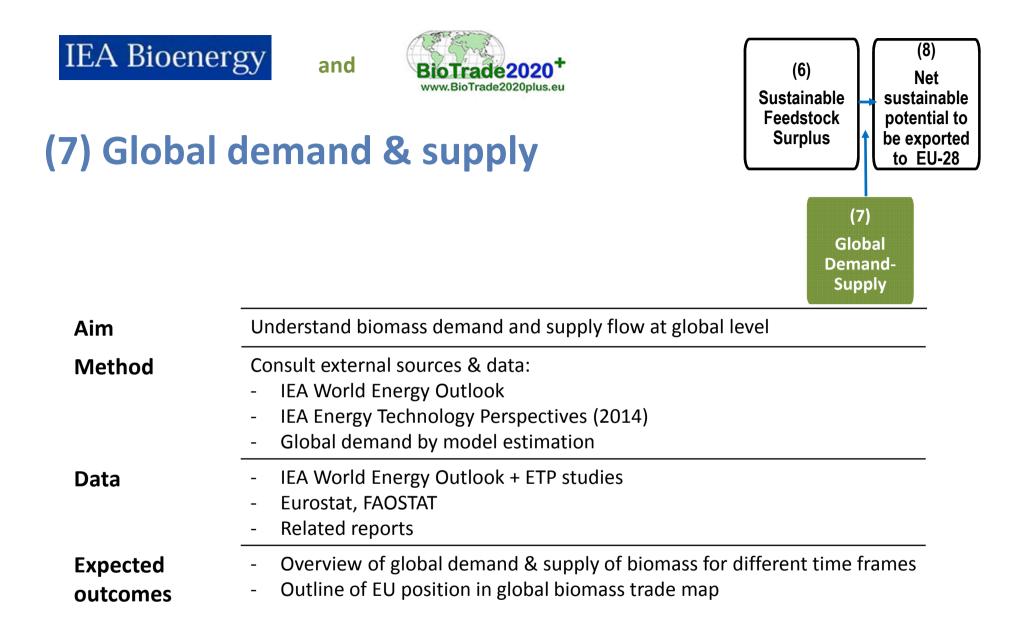
and

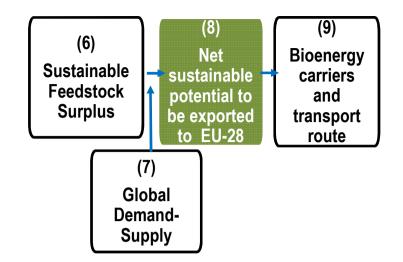
Aim	Determine the total market potential of a given feedstock in any country. Market potential is meant as the (market) conditions under which sustainable potentials could be mobilized.		
Method	Qualitative argumentation on current market situation and future demands		
Data	 Current use of feedstocks and characterization Expected domestic demand Policies (and its stability) in third countries (e.g. EU-28 or EU MS) 		
Expected outcomes	Aggregated market potential (PJ) by country and feedstock for base year (2010 or 2012) + 2020 and 2030		



(5) Domestic demand

Aim	Understand demand of lignocellulosic feedstocks for energy & various uses at sourcing countries: - Traditional non-energy uses - Traditional energy uses - New biomass applications
Method	 in consultation with expert opinion and based on: Socio-economic development (living standards, GDP) Policies in energy, environment & climate
Data	 International & national databases (e.g. FAOSTAT, national statistics) Communication with local experts Results from other projects/studies
Expected outcomes	Domestic demand for all uses (energy and non-energy uses, new biomass applications) for 2020 and 2030

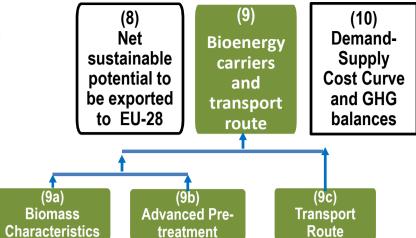

Aim	Identify surplus of sustainable feedstock potential	
Method	(6)= (4)-(5)	
Data	Same as for (4) and (5)	
Expected outcomes	Inventory of feedstock surplus in scenarios	



(8) Net sustainable potential for exports to EU28

and

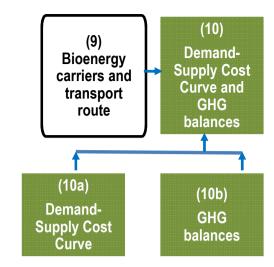
Aim	Estimate final potential of feedstock to be exported to EU-28 that meet sustainability criteria		
Method	 Estimation of domestic supply capacity Consideration of global demand (other importing countries) GLOBIOM model 		
Data	Global demand and trade projections (from IEA)		
Expected outcomes	Net sustainable export potentials		



and

(9) Biomass carriers + transport route

	9a) Biomass Characteristics	(9b) Technologies for pre- treatment	(9c) Transport route
Aim	Define and select suitable biomass for export	Identify technologies to treat specific feedstocks	Design optimal transport routes
Method	Identify key factors for easy biomass transport and cost reduction	Based on literature research, identify current and anticipate treatments.	BIT-UU model
Data	Production cost, feedstock composition	Physical & chemical characteristics of biomass feedstocks	Geographical data of sourcing regions, mainly from national statistics and site survey
Expected outcomes	Selection of sustainable biomass pre-treatment based on characteristics	Biomass pre-treatment in the scenarios	Cost of biomass supply & over time



(10) Supply & demand cost curve + GHG balances of bioenergy imports

	(10a) Demand-Supply Cost Curve	(10b) Determine GHG emissions
Aim	Estimate total cost of biomass in the supply chains Combine with supply over time to create cost- supply curves	Determine GHG emissions in whole supply chain
Method	Use cost balance equation	Use GHG emissions equation in RED Annex V + C stock change/iLUC
Data	 Cost in the different stages of biomass supply chains Cost drivers in different scenarios 	 Emissions in different processes Literature reviews and external sources
Expected outcomes	Cost of biomass supply over time	Options to reduce GHG emissions & amount of importable solid bioenergy

Thank you – questions?

Uwe R. Fritsche

uf@iinas.org

www.biotrade2020plus.eu

https://www.linkedin.com/groups/BioTrade2020plus-8120800/about

https://www.facebook.com/groups/biotrade2020plus/

Co-funded by the Intelligent Energy Europe Programme of the European Union

